

Annual Performance Report 2021

Permit EPR/BK0825UI

Riverside Resource Recovery Facility

Cory

Year: 2021

Address: Norman Road, Belvedere, Bexley, DA17 6JY

Tel: 0208 320 3310

Email: info@coryenergy.com

Prepared by: G. Jack Position: Process Engineer

Approved by: M. Santana Position: Operations Manager

Version: 1

Issue Date: 18/01/2022

Annual Performance Report 2021

Riverside Resource Recovery Facility

Section	Subject	Page
	Facility Information	1
	Operational Summary	2
	Operational Data	3
	Performance Form 1	4
	Energy Form 1	5
	Permit Compliance	6
	Improvements	7
	Public Liasion	8
	Residue Quality - Optional	9
	Emissions to Water	10
	Emissions to Air (periodically monitored)	11
	Emissions to Air (continuously monitored)	12
	Hydrogen Chloride emissions	13
	Sulphur Dioxide emsissions	14
	Oxides of Nitrogen emissions	15
	Total Organic Carbon emissions	16
	Particulate Matter emissions	17
	Carbon Monoxide emissions	18
	Ammonia emissions	19

Version (Version Control						
Section	Information	Date)				

Сору	Name, Role	No.
1	John Tollervey, Environment Agency Installations Officer	
1	Dougie Sutherland, CEO	
1	Mark Greenwood, Director Health, Safety, Environment & Quality Assurance	
1	David Crawford, Plant Manager	

This report is required under the Industrial Emissions Directive's Article 55(2) requirements on reporting and public information on waste incineration plants and co-incineration plants, which require the operator to produce an annual report on the functioning and monitoring of the plant and make it available to the public.

Plant Description and Design

"The Riverside Resource Recovery Energy from Waste facility at Belvedere in the London Borough of Bexley, uses the waste that would otherwise have gone to landfill as feedstock to generate electricity. As one of the largest operations of its kind in the UK, the facility generates c.580,000 MWh of electricity each year from processing upto 785,000 tonnes of waste through its three operating combustion lines. What's more, we use the River Thames as a green highway to move the waste from the city to the facility on our fleet of tugs and barges, removing around 100,000 truck movements a year off our capital's congested roads. By generating electricity from domestic and commercial residual waste, after recycling, we are improving resource efficiency, avoiding London's use on landfill, and achieving greater sustainability as part of London's circular economy. With the Riverside Resource Recovery facility continuing to be fully operational, the Environment Agency has renewed the facility R1 certification; this means that the facility is classified as a recovery operation. The facility is permitted to process 785,000 tonnes of waste from across London and exports 525,000 – 530,000 Mega Watt hours of electricity to the National Grid."

Summary of Operational Processes and Procedures

The Riverside Energy from Waste facility is a 24/7 operation which is operated from a continuously manned control room. The control room operator shall ensure that the site's operations are performed to the facility design and to the strict requirements of the environmental permit.

The river operations are a key aspect of the process for Riverside, with over 85% of the waste being brought to the plant on barges along the River Thames. From the jetty, the waste containers are removed from the barges and are transported using dock tractors into the site tipping hall.

In the tipping hall the waste is tipped into one of 12 tipping bays. Each bay has a hydraulically operated door designed to minimise noise and odour during tipping. Lights on each tipping bay indicate to the drivers of the vehicles which bay is available to receive waste. The tipping bays open into a waste bunker 30m deep, 61m long and 16m wide. It can hold up to circa. 10,000 tonnes of waste, enough to fuel the plant at full capacity for five days.

The plant runs three combustion lines. The waste cranes feed each combustion line ensuring that the boilers have the required feedstock for 24 hour operation. The waste travels down the feed chutes and onto a horizontal feeder table where hydraulically operated ram feeders push the waste onto the moving grate. The grate is made up of alternate rows of fixed and moving cast steel bars that are arranged on a slope. The forward movement of these bars tumbles the waste slowly down the burning waste bed.

Primary heated combustion air is drawn from above the waste bunker and fed into the waste bed through orificies in each grate bar. This process dries the waste and provides the correct amount of air to allow good combustion of the waste. Secondary swirling air is introduced above the grate. This ensures that the gases given off by the burning waste are thoroughly mixed, resulting in a fully optimised combustion process and lower levels of toxicity in the gases leaving the combustion chamber. Ammonia is injected into the flue gas to reduce the level of Oxides of Nitrogen.

The resulting sub-product, from processing the waste, is known as Incinerator Bottom Ash (IBA) and this falls from the end of the grate into a quench bath. The IBA is collected in an ash bunker and loaded into containers by cranes and hoppers. Any oversized metal is removed and recycled and the remainder is transported on the river (circa 200,000 tonnes per annum) to our partner plant at Tilbury Docks for processing and recycling into aggregate that is primarily used within the construction industry.

The energy from the flue gases is utilised to convert water into steam via the steam drum. The steam is then further super-heated and drives the turbine/generator, producing electricity which is used to power the facility and exported to the National Grid.

Flue gases leave the boiler and pass through a reactor tower where hydrated lime, powdered activated carbon and water are injected into the swirling gas flow. These neutralise acids and capture heavy metals.

Gases from the reactor tower are then drawn into the fabric filter baghouse. The clean gases pass through the filters and the Air Pollution Control residue (APCr) collects on the outer surface of the bags. The APCr is collected in silos.

Flue Gas is drawn through the entire process by Induced Draft Fans. The clean hot gas from the Fabric Filter is passed through a heat exchanger that heats feed water to provide an efficient process. Cooled gas is emitted via an 85 metre stack where it is discharged into atmosphere. Continuous Emissions Monitoring (CEMS) equipment continually records emissions to air.

The plant operates within a Health, Safety, Environmental and Quality Integrated Management System which is compliant with OHSAS 18001, ISO 14001 and ISO 9001 and is independently audited.

Operational Data

Plant Size		785,000 tonnes pa	MWt	h	MWe
No. of combustion lines	3	No. of Turbines:		1	

Waste types received	Unit	Q1	Q2	Q3	Q4	Year Total	%
Household / Local Authority		97,479	106,252	108,038	118,849	430,618	54.5%
Commercial & Industrial		87,511	85,203	82,078	103,513	358,305	45.4%
Hazardous						-	-
Clinical						-	-
Waste wood (biomass)						_	-
Refuse Derived Fuel * - H'hol	S					-	-
Refuse Derived Fuel * - C&I	tonnes		2,359	1,940	306	4,605	0.6%
River Storage annual start/en	\$	1,232			5,268	- 4,036	-
Other [Please specify]							
Other [Please specify]							
Total waste received		184,990	193,813	192,056	222,669	789,492	100.0%
Rejected Waste						-	-
Unprocessed waste transferre		555	2,948	2,894		6,398	0.8%
Storage bunker annual start/e	end bal	9,355			10,780	1,425	0.2%
Total waste combusted		184,435	190,865	189,162	222,669	781,669	99.0%

Energy Useage / Export	Unit	Q1	Q2	Q3	Q4	Year Total	KWh/te
Power Generated		140,902	156,652	150,975	160,465	608,994	779
Power Exported	MWh	123,434	137,416	131,099	140,679	532,628	681
Power Used on site	Ź	17,468	19,236	19,876	19,786	76,366	98
Power Imported		822	-	9	831	1,662	2
Parasitic Load	%	12.9%	12.3%	13.2%	12.8%	12.8%	
Thermal Energy Produced **	MWh					-	-
Thermal Energy Exported **	Ź					-	-
R1 value					0.76	Operation	nal

Waste Disposal & Recove	Unit	Q1	Q2	Q3	Q4	Year Total	% inputs
APC Residues - produced		5,221	4,923	5,000	4,829	19,973	2.6%
IBA - produced		40,006	42,834	43,070	42,665	168,575	21.6%
Metals recycling	nes	216	230	214	198	858	0.1%
Other	ton	-	-	-	-	-	-
Other		-	-	-	-	-	-
Other		-	-	-	-	-	-

Raw Material Usage	Unit	Q1	Q2	Q3	Q4	Year Total	ιg or Ltr /te
Mains Water	Itrs	33,080,000	34,820,000	24,600,000	42,210,000	134,710,000	172.34
Ammonia	kgs	350,984	255,676	174,845	89,958	871,463	1.11
Activated Carbon	kgs	100,240	100,660	103,860	104,940	409,700	0.52
Lime / hydrated lime	kgs	2,646,860	2,327,200	2,306,300	2,234,500	9,514,860	12.17
Fuel oil	Itrs	429,586	378,913	297,898	236,063	1,342,460	1.72
Gas	cf	-	-	-	-	-	
Other		-	-	-	-	-	

Summary	ine/Un	Q1	Q2	Q3	Q4	Year Total	
Availability of waste	1	2,002	2,090	1,568	2,056	7,715	88.1%
combustion by line, hrs	2	1,968	1,703	2,025	2,020	7,715	88.1%
combastion by line, the	3	1,607	2,122	2,207	2,049	7,985	91.2%
Overall Availability, mean av	g. of all	lines, hrs				7,805	89.1%
Hours of turbine operations,	ł 1	1,928	2,184	2,206	2,186	8,504	95.4%
Hours of heat / steam export						-	n/a

Net Calorific Value of waste	MJ/kg						-
Abnormal Events	qty.	-	-	-	-	-	no
Abnormal operation	hours	-	-	-	-	-	0.00%
Permit Breaches	qty.	-	-	-	-	-	no

Summary of Plant Operations and Maintenance during the reporting year

Planned Plant Shutdowns:

During 2021 each of the three boilers have under gone major inspections together with a common plant outage which was under taken in July of 2021. The major inspection scope of works included Grate Maintenance and any rectification, Refractory refurbishment, Boiler cleaning and Fabric filter maintenance. The driver for the common outage is to perform the required inspections under the Pressure Systems Safety Regulations 2000 (PSSR) all items registered on the written scheme were inspected, tested and witnessed by our competent body. 2021 boiler improvements as follows:

Boiler improvement works have continued through 2021 with the start of a 3 year project to upgrade the furnaces. Refractory tiles have been removed from a third of the surface area and replaced with Alloy 625 weld overlay. The modification provides benefits in condition monitoring as well as reducing the temperature of the flue gas around the superheater stages, thus reducing corrosion in the long term. The bag house filter systems have undergone extensive condition monitoring of the internal structure to ensure no corrosion problems exist and repairs could be conducted to maintain reliability of the system. Common switchboards have been maintained in line with a 10 year maintenance schedule without fault and the profibus communication systems have been inspected and modified for reliability. The steam turbine control system PC's have also been upgraded in line with the facilities obsolescence plan.

Summary of Residue Handling for the reporting year

100% of the Incinerator Bottom Ash and Recovered Metals were transported via the River Thames to Blue Phoenix Ltd (previously Ballast Phoenix) at their premises at Tilbury Docks.

The Air Pollution Control residue (APCr) was sent to two main destinations throughout 2021:

- 1) OCO Ltd at Brandon, Suffolk where it was treated by Accelerated Carbonation Technology (ACT) to produce a stabilised product that is used as a component of breeze blocks.
- 2) Veolia Minosis in Cheshire where the APCr is stored in an underground storage facility within the Winsford salt mine. The unique geology in this area of Cheshire creates an impermeable cavity which is ideal for the storage of APCr.

2021 Annual Reporting Performance Form 1 Permit EPR/BK0825UI Operator: Cory Facility: Riverside Resource Recovery Facility Form: Performance 1 01 January 2021 31 December 2021 Reporting Period from: to: 2021 Annual Reporting of Waste Disposal and Recovery % / tonne of waste Disposal Route(s) **Disposal Tonnes Recovery Tonnes** Waste Description incinerated 1) Hazardous Wastes APC Residues R05, D05 10,355.8 9,616.9 2.6% IBA Total Hazardous Waste 10,355.8 9,616.9 2.6% 2) Non-Hazardous Wastes R04 169.426.4 21.7% IBA Ferrous Metal Process Water Total Non-Hazardous Waste 0.0 169,426.4 21.7% **TOTAL WASTE** 179,043.3 24.2% 10,355.8 Operator's comments: 2021 Annual Reporting of Water and Other Raw Material Usage Raw Material Unit Specific Useage Unit Usage Mains Water 134710 0.17 m^3 m³/te Total Water 134710 m^3 0.17 m³/te 871463 1.11 Ammonia kg kg/te Activated Carbon 409700 kg 0.52 kg/te Hydrated Lime 9514860 kg 12.17 kg/te Operator's comments: 2021 Annual Reporting of other performance indicators Parameter Results by Line Α1 A2 АЗ Α4 Α5 Turbine 1 Turbine 2 Operating hours for 7715 7715 7985 the year, hours Number of periods of abnormal operation, 0 0 0 qty. Cumulative hours of abnormal operation 0 0 0 for this year, hours Operator's comments:

Date:

Signed:

2021 Annual Reporting of Energy Usage/Export

Signed:

Permit EPR/BK0825UI Operator: Cory Facility: Riverside Resource Recovery Facility Form: Energy 1 01 January 2021 31 December 2021 Reporting Period from: to: Specific Useage (KWh/tonne Energy Source Energy Usage Unit incinerated Electricity Produced 779 608,994 MWh Electricity Imported 1662.47 2 MWh **Electricity Exported** 532,628 681 MWh Gas Oil 1241.18 tonnes 0 Steam/hot water exported GWh Operator's comments:

Date:

Summary of Permit Compliance

Compliance with permit limits for continuously monitored pollutants

The plant met its emission limits as shown in the table below:

Substance	Percentage time compli	Percentage time compliant during operation				
	Half-hourly limit	Daily limit				
Particulates	100%	100%				
Oxides of nitrogen	100%	100%				
Sulphur dioxide	100%	100%				
Carbon monoxide	100% 95% of 10-min averages	100%				
Total organic carbon	100%	100%				
Hydrogen chloride	100%	100%				

	Summary of any notifications or non-compliances under the permit										
Date	Summary of notification or non-compliance [including Line/Reference]	Reason	Measures taken to prevent reoccurrence								

	Summary of any complaints received and actions to taken to resolve them.								
Date	Summary of complaint [including Line/Reference]	Reason *	Measures taken to prevent reoccurrence						

^{*} including whether substantiated by the operator or the EA

Details of Public & Stakeholder Liasion

Summary of events held during the reporting year.						
Date Description						
12th February	Reading University Environmental Management Students - Presentation					
25th - 29th October	School/Collge Work Experience event.					

List of events planned for next year					
Date	Description				
10th February	Reading University Environmental Management Students - Presentation & Site Tour				

If you wish to be involved in the public liasion programme, please contact info@coryenergy.com

Summary of Plant Improvements

Summary of any efficiency improvements that have been completed within the year.					
Summary of any permit improvement conditions that have been completed within the year and the					
resulting environmental benefits.					
resulting environmental penents.					
Summary of any changes to the plant or operating techniques which required a variation to the permit and					
a summary of the resulting environmental impact.					
a daminary or the recent general maps and the recent gener					
Summary of any other improvements made to the plant or planned to be made and a summary of the					
resulting environmental benefits.					

Residue Quality Monitoring Requirements

Summary of monitoring undertaken and compliance

In 2021, the Incinerator Bottom of Ash, of each line, was tested monthly for Total Organic Carbon (TOC) & Quarterly for Heavy Metals suite, Dioxins/Furans and Dioxin-like PCBs in line with the site permit requirements.

In 2021, The Air Pollution Control residue (APCr) was tested for Heavy Metals suite, Dioxins/Furans and Dioxin-like PCBs in line with the site permit requirements.

In 2021, the facility continued to adopt the the ESA Sampling & Testing Protocol to Assess the Status of Incinerator Bottom Ash, for the hazard assessment of IBA. The IBA remained classified as non-hazardous throughout 2021.

Commentary on any specific events					
Date & Event	Description				

Baramatar (unit)	Limit	Norma	al Operation
Parameter (unit)	LIIIII	Bottom ash	APC Residues
Total Organic Carbon (average %)	<3%	0.899	
No. of Assessments Undertaken		36	12
No. of Hazardous Results		0	

Comments :		

Emissions to Water

Summary of monitoring undertaken and compliance						
		or grease at three emission points f	or uncontan	ninated roof	and surface	water. No
visible signs of oil or grease	seen through	out 2021.				
Commentary on any spe	cific events	3				
Date & Event	Description	on				
Emissions to Water / Se	wer					
Parameter		Monitoring Frequency	Limit	Target	Max.	Average

Emissions to Air (continously monitored)

Summary of monitoring undertaken, standards used and compliance

All substances listed below are continuously monitored in line with the requirements of the Environmental permit. Oxides of Nitrogen (ISO 10849), Particulate Matter (BS EN 13284-2), Total Organic Carbon (BS EN 12619), Hydrogen Chloride, Sulphur Dioxide (BS 6069-4.4)

0.1.4	Reference	Emission Limit	t A1			A2	A3	
Substance	Period	Value	Max.	Avg.	Max.	Avg.	Max.	Avg.
Ovides of nitrogen	Daily mean	200 mg/m ³	190.10	169.85	188.80	158.67	188.80	158.68
Oxides of nitrogen	½ hourly mean	400 mg/m ³	224.50	169.89	221.60	150.43	223.40	166.99
Particulates	Daily mean	10 mg/m ³	-	-	-	-	-	-
	½ hourly mean	30 mg/m ³	-	-	-	-	-	-
Total Organic Carbon	Daily mean	10 mg/m ³	0.70	0.10	1.20	0.66	0.80	0.13
	½ hourly mean	20 mg/m ³	8.20	0.13	8.90	0.70	8.30	0.15
Hydrogen chloride	Daily mean	10 mg/m ³	5.40	1.93	6.70	1.33	6.40	1.98
	½ hourly mean	60 mg/m ³	7.50	1.96	8.80	1.38	7.60	2.03
Sulphur dioxide	Daily mean	50 mg/m ³	9.10	1.15	10.10	8.19	12.00	8.53
	½ hourly mean	200 mg/m ³	47.90	1.28	48.00	8.19	56.90	8.53
Carbon monoxide	Daily mean	50 mg/m ³	15.80	5.21	7.70	3.43	13.30	3.90
	95%ile 10-min avg	150 mg/m ³	30.99	5.80	35.23	6.06	20.37	6.28
Ammonia	Daily mean	No limit set	0.70	0.42	1.00	0.33	1.40	0.43

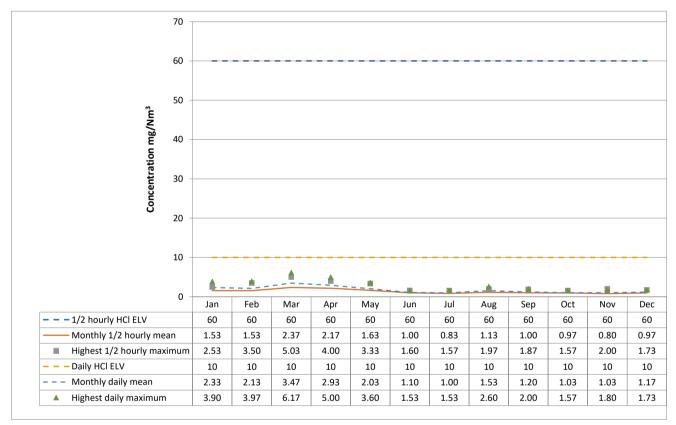
^{* =} delete or amend as appropriate

Comments:

Following EA guidance and approval in July 2015, RRRL now monitor particulate emissions qualitatively as opposed to quantitatively. The particulate data is now reported in mA (milliamps) and the reporting range of the instrument is 4mA to 20mA.

Emissions to Air (periodically monitored)

Summary of monitoring undertaken, standards used and compliance

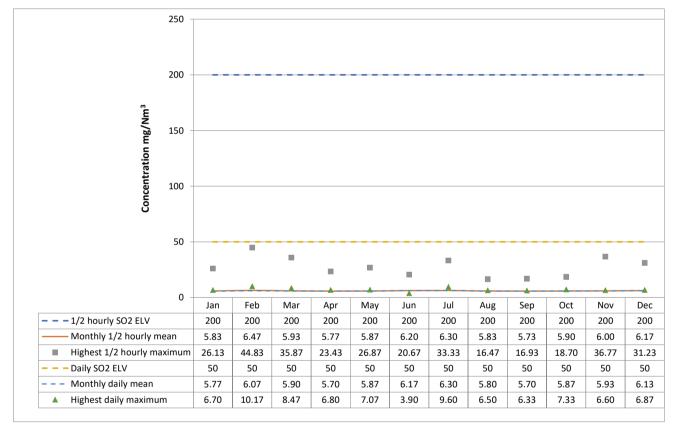

All substances had 100% compliance with Emission Limit Values stated in Environmental Permit. Heavy metals suite (BS EN 14385), Mercury (BS EN 13211), Dioxins/Furans (BS EN 1948-1) and Polychlorinated Biphenyls (BS EN 1948-1) monitoring performed on a quarterly basis. Polycyclic Aromatic Hydrocarbons (BS ISO 11338-1) and Hydrogen Fluoride (BS ISO 15713) monitoring performed on a bi-annual basis.

Results of emissions to air that are periodically monitored								
Substance	Ref.	Emission Limit	Average					
oubstance -	Period	Value	A 1	A2	A3			
Hydrogen fluoride	1 hr	2 mg/m ³	0.02	0.025	0.015			
Cd and Th and their compounds	6-8hrs	0.05 mg/m ³	0.001	0.001	0.001			
Hg and its compounds	6-8hrs	0.05 mg/m ³	0.001	0.009	0.001			
Sb, As, Pb, Cr, Co, Cu, Mn, Ni, V and their compounds	6-8hrs	0.5 mg/m ³	0.019	0.02	0.034			
Dioxins & Furans (I-TEQ)	6-8hrs	0.1 ng/m ³	0.002	0.002	0.002			
PCBs (WHO-TEQ Humans / Mammals)	6-8hrs	None set ng/m ³	0.00035	0.00014	0.00027			
PCBs (WHO-TEQ Fish)	6-8hrs	None set ng/m ³	0.00002	0.00001	0.00002			
PCBs (WHO-TEQ Birds)	6-8hrs	None set ng/m ³	0.00118	0.00046	0.00083			
Dioxins & Furans (WHO- TEQ Humans / Mammals) Dioxins & Furans (WHO-	6-8hrs	None set ng/m ³	0.002	0.002	0.003			
TEQ Fish)	6-8hrs	None set ng/m ³	0.002	0.002	0.003			
Dioxins & Furans (WHO- TEQ Birds)	6-8hrs	None set ng/m ³	0.003	0.003	0.005			
Anthanthrene	6-8hrs	None set µg/m³	0.0015	0.0015	0.0015			
Benzo(a)anthracene	6-8hrs	None set µg/m ³	0.0019	0.0018	0.0015			
Benzo(a)pyrene	6-8hrs	None set µg/m ³	0.0019	0.0015	0.0015			
Benzo(b)fluoranthene	6-8hrs	None set µg/m ³	0.0015	0.0018	0.0015			
Benzo(b)naptho(2,1-d) thiophene	6-8hrs	None set µg/m ³	0.0015	0.0018	0.0015			
Benzo(c)phenanthrene	6-8hrs	None set µg/m ³	0.0015	0.0015	0.0015			
Benzo(ghi)perylene	6-8hrs	None set µg/m ³	0.0029	0.0018	0.0018			
Benzo(k)fluoranthene	6-8hrs	None set µg/m ³	0.0015	0.0015	0.0015			
Cholanthrene	6-8hrs	None set µg/m ³	0.0015	0.0015	0.0015			
Chrysene	6-8hrs	None set µg/m ³	0.0021	0.0032	0.0015			
Cyclopenta(cd)pyrene	6-8hrs	None set µg/m ³	0.0019	0.0026	0.00305			
Dibenzo(ai)pyrene	6-8hrs	None set µg/m ³	0.0015	0.0015	0.0015			
Dibenzo(ah)anthracene	6-8hrs	None set µg/m ³	0.0015	0.0015	0.0015			
Fluoranthene	6-8hrs	None set µg/m ³	0.0765	0.0805	0.043			
Indeno(123-cd) pyrene	6-8hrs	None set µg/m ³	0.0015	0.0015	0.0015			
Naphthalene	6-8hrs	None set µg/m ³	0.1025	0.095	0.1575			
Comments :								

Monitoring of Hydrogen Chloride emissions

Whole Installation

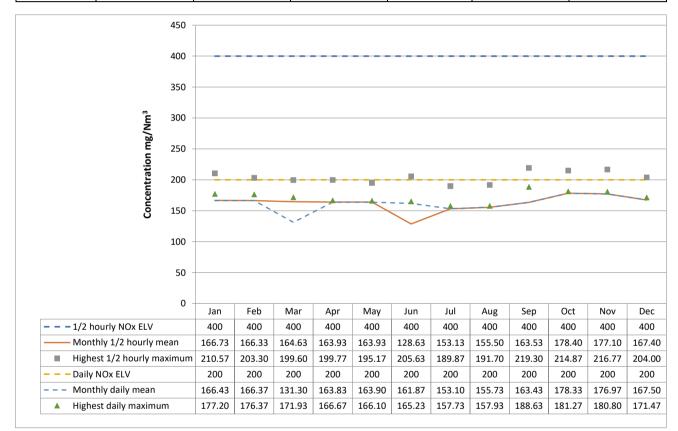
mg/Nm ³	1/2 H	ourly Reference Po	eriods	Daily Reference Periods				
2021	1/2 hourly HCI ELV	Monthly 1/2 hourly mean	Highest 1/2 hourly maximum	Daily HCI ELV	Monthly daily mean	Highest daily maximum		
Jan	60	1.53	2.53	10	2.33	3.90		
Feb	60	1.53	3.50	10	2.13	3.97		
Mar	60	2.37	5.03	10	3.47	6.17		
Apr	60	2.17	4.00	10	2.93	5.00		
May	60	1.63	3.33	10	2.03	3.60		
Jun	60	1.00	1.60	10	1.10	1.53		
Jul	60	0.83	1.57	10	1.00	1.53		
Aug	60	1.13	1.97	10	1.53	2.60		
Sep	60	1.00	1.87	10	1.20	2.00		
Oct	60	0.97	1.57	10	1.03	1.57		
Nov	60	0.80	2.00	10	1.03	1.80		
Dec	60	0.97	1.73	10	1.17	1.73		



Monitoring of Sulphur dioxide emissions

Whole Installation

mg/Nm³	1/2 Ho	ourly Reference Po	eriods	Daily Reference Periods			
2021	1/2 hourly SO2 ELV	Monthly 1/2 hourly mean	Highest 1/2 hourly maximum	Daily SO2 ELV Monthly daily mean		Highest daily maximum	
Jan	200	5.83	26.13	50	5.77	6.70	
Feb	200	6.47	44.83	50	6.07	10.17	
Mar	200	5.93	35.87	50	5.90	8.47	
Apr	200	5.77	23.43	50	5.70	6.80	
May	200	5.87	26.87	50	5.87	7.07	
Jun	200	6.20	20.67	50	6.17	3.90	
Jul	200	6.30	33.33	50	6.30	9.60	
Aug	200	5.83	16.47	50	5.80	6.50	
Sep	200	5.73	16.93	50	5.70	6.33	
Oct	200	5.90	18.70	50	5.87	7.33	
Nov	200	6.00	36.77	50	5.93	6.60	
Dec	200	6.17	31.23	50	6.13	6.87	



Monitoring of Oxides of Nitrogen emissions

Whole Installation

mg/Nm³	1/2 H	ourly Reference Pe	eriods	Daily Reference Periods			
2021	1/2 hourly NOx ELV	Monthly 1/2 hourly mean	Highest 1/2 hourly maximum	Daily NOx ELV	Monthly daily mean	Highest daily maximum	
Jan	400	166.73	210.57	200	166.43	177.20	
Feb	400	166.33	203.30	200	166.37	176.37	
Mar	400	164.63	199.60	200	131.30	171.93	
Apr	400	163.93	199.77	200	163.83	166.67	
May	400	163.93	195.17	200	163.90	166.10	
Jun	400	128.63	205.63	200	161.87	165.23	
Jul	400	153.13	189.87	200	153.10	157.73	
Aug	400	155.50	191.70	200	155.73	157.93	
Sep	400	163.53	219.30	200	163.43	188.63	
Oct	400	178.40	214.87	200	178.33	181.27	
Nov	400	177.10	216.77	200	176.97	180.80	
Dec	400	167.40	204.00	200	167.50	171.47	

Monitoring of Total organic carbon emissions

Whole Installation

mg/Nm ³	1/2 Ho	ourly Reference Pe	eriods	Daily Reference Periods			
2021	1/2 hourly TOC ELV	Monthly 1/2 hourly mean	Highest 1/2 hourly maximum	Daily TOC ELV	Monthly daily mean	Highest daily maximum	
Jan	20	0.30	3.97	10	0.30	0.40	
Feb	20	0.37	5.53	10	0.30	0.67	
Mar	20	0.33	3.67	10	0.30	0.77	
Apr	20	0.27	4.37	10	0.23	0.77	
May	20	0.30	3.83	10	0.30	0.43	
Jun	20	0.30	5.07	10	0.27	0.47	
Jul	20	0.30	5.67	10	0.23	0.50	
Aug	20	0.30	5.47	10	0.27	0.43	
Sep	20	0.33	6.30	10	0.27	0.60	
Oct	20	0.33	5.87	10	0.33	0.50	
Nov	20	0.40	6.73	10	0.37	0.87	
Dec	20	0.40	7.73	10	0.37	0.57	


Riverside Resource Recovery Facility

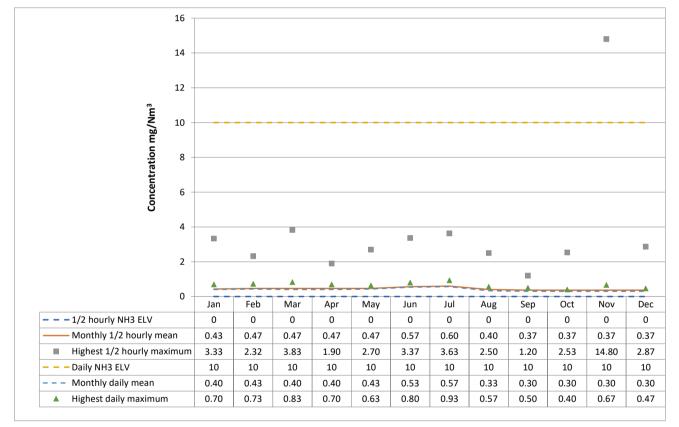
Monitoring of Carbon Monoxide (10-minute avg)

Whole Installation

See Notes in Cell S3

mg/Nm³		10-minute R	eference Periods	Daily Reference Periods			
2021	95%ile 10- min avg CO ELV	95%ile 10-min avg maximum	Monthly CO 10- min avg mean	10-min avg maximum	Daily CO ELV	Monthly daily mean	Highest daily maximum
Jan	150	17.53	4.80	415.67	50	4.77	8.50
Feb	150	30.87	5.07	333.00	50	5.10	9.43
Mar	150	23.20	4.67	415.37	50	4.60	8.87
Apr	150	36.60	6.20	522.53	50	6.20	12.23
May	150	46.50	6.60	395.93	50	6.50	11.53
Jun	150	33.30	6.53	353.17	50	6.43	12.47
Jul	150	22.00	4.17	436.23	50	6.50	10.70
Aug	150	31.63	4.20	430.80	50	7.17	11.87
Sep	150	18.90	7.17	469.63	50	7.17	11.23
Oct	150	21.60	6.80	391.23	50	6.77	10.27
Nov	150	31.33	8.37	471.13	50	5.93	15.77
Dec	150	32.90	8.00	501.70	50	8.00	13.23

Comments:


Environment Agency explanatory note: The 10-minute average ELV is based on the "95th percentile". In this case this means that 95% of the 10 minute averages in the relevant 24-hour period (i.e. 137) must be below 150 mg/Nm3, and 5% (i.e. 7) are allowed to be any value above 150 mg/Nm3. Whilst we expect operators to minimise CO emissions at all times, it is perfectly acceptable for the value of the maximum 10-minute average to be above 150 mg/Nm3, provided the 95th percentile ELV has been met for that period.

Monitoring of Ammnonia emissions

Whole Installation

See Notes in Cell Q3

mg/Nm ³	1/2 Ho	ourly Reference Pe	eriods	Daily Reference Periods			
2021	1/2 hourly NH3 ELV	Monthly 1/2 hourly mean	Highest 1/2 hourly maximum	Daily NH3 ELV	Monthly daily mean	Highest daily maximum	
Jan	0	0.43	3.33	10	0.40	0.70	
Feb	0	0.47	2.32	10	0.43	0.73	
Mar	0	0.47	3.83	10	0.40	0.83	
Apr	0	0.47	1.90	10	0.40	0.70	
May	0	0.47	2.70	10	0.43	0.63	
Jun	0	0.57	3.37	10	0.53	0.80	
Jul	0	0.60	3.63	10	0.57	0.93	
Aug	0	0.40	2.50	10	0.33	0.57	
Sep	0	0.37	1.20	10	0.30	0.50	
Oct	0	0.37	2.53	10	0.30	0.40	
Nov	0	0.37	14.80	10	0.30	0.67	
Dec	0	0.37	2.87	10	0.30	0.47	

Comments :

An indicated ELV value of zero in the table above means that no ammonia limit is set in the permit.