

Permit EPR/BK0825IU

Riverside Resource Recovery Facility

		Cory	
Year:	2024		
Addross	Norman	Pood Bolyodoro	Roylov DA176 IV
Address.	Norman	i Roau, Deiveuere, c	bexiey, DAT / 0J f
Tel:	0208 320 33	35	
Email:	enquiries@corygrou	up.co.uk	
.			
Prepared by:	G. Jack	Position:	Process Engineer
Approved by:	S Taynton	Position [.]	Operations Manager
rippiorod by:	o. raymon	r contorn.	operatione manager
Version:	1		
Issue Date:	28/01/2025		

Section	Subject	Page
	Facility Information	2
	Operational Data	4
	Operational Summary	5
	Performance Form 1	6
	Energy Form 1	7
	Permit Compliance	8
	Improvements	9
	Public Liaison	10
	Carbon dioxide and nitrous oxide emissions	11
	Residue Quality	12
	Emissions to Water	13
	Emissions to Air (periodically monitored)	14
	Emissions to Air (continuously monitored)	15
	Hydrogen Chloride emissions	16
	Sulphur Dioxide emissions	17
	Oxides of Nitrogen emissions	18
	Total Organic Carbon emissions	19
	Carbon Monoxide emissions	20
	Ammonia emissions	21

Version Control				
Section	Information	Date		

Distribution					
Сору	Name, Role	No.			

This report is required under the Industrial Emissions Directive's Article 55(2) requirements on reporting and public information on waste incineration plants and co-incineration plants, which require the operator to produce an annual report on the functioning and monitoring of the plant and make it available to the public.

Plant Description and Design

The Riverside Resource Recovery Energy from "The Riverside Resource Recovery Energy from Waste facility at Belvedere in the London Borough of Bexley, uses the waste that would otherwise have gone to landfill as feedstock to generate electricity. As one of the largest operations of its kind in the UK, the facility generates c.610,000 MWh of electricity each year from processing up to 850,000 tonnes of waste through its three operating combustion lines. What's more, we use the River Thames as a green highway to move the waste from the city to the facility on our fleet of tugs and barges, removing around 100,000 truck movements a year off our capital's congested roads. By generating electricity from domestic and commercial residual waste, after recycling, we are improving resource efficiency, avoiding London's use on landfill, and achieving greater sustainability as part of London's circular economy.

With the Riverside Resource Recovery facility continuing to be fully operational, the Environment Agency has renewed the facility R1 certification; this means that the facility is classified as a recovery operation.

Summary of Operational Processes and Procedures

The Riverside Energy from Waste facility is a 24/7 operation which is operated from a continuously manned control room. The control room operator shall ensure that the site's operations are performed to the facility design and to the strict requirements of the environmental permit.

The river operations are a key aspect of the process for Riverside, with over 85% of the waste being brought to the plant on barges along the River Thames. From the jetty, the waste containers are removed from the barges and are transported using dock tractors into the site tipping hall.

In the tipping hall the waste is tipped into one of 12 tipping bays. Each bay has a hydraulically operated door designed to minimise noise and odour during tipping. Lights on each tipping bay indicate to the drivers of the vehicles which bay is available to receive waste. The tipping bays open into a waste bunker 30m deep, 61m long and 16m wide. It can hold up to circa. 10,000 tonnes of waste, enough to fuel the plant at full capacity for five days.

The plant runs three combustion lines. The waste cranes feed each combustion line ensuring that the boilers have the required feedstock for 24 hour operation. The waste travels down the feed chutes and onto a horizontal feeder table where hydraulically operated ram feeders push the waste onto the moving grate. The grate is made up of alternate rows of fixed and moving cast steel bars that are arranged on a slope. The forward movement of these bars tumbles the waste slowly down the burning waste bed.

Primary heated combustion air is drawn from above the waste bunker and fed into the waste bed through orificies in each grate bar. This process dries the waste and provides the correct amount of air to allow good combustion of the waste. Secondary swirling air is introduced above the grate. This ensures that the gases given off by the burning waste are thoroughly mixed, resulting in a fully optimised combustion process and lower levels of toxicity in the gases leaving the combustion chamber. Ammonia is injected into the flue gas to reduce the level of Oxides of Nitrogen.

The resulting sub-product, from processing the waste, is known as Incinerator Bottom Ash (IBA) and this falls from the end of the grate into a quench bath. The IBA is collected in an ash bunker and loaded into containers by cranes and hoppers. Any oversized metal is removed and recycled and the remainder is transported on the river (circa 200,000 tonnes per annum) to our partner plant at Tilbury Docks for processing and recycling into aggregate that is primarily used within the construction industry.

The energy from the flue gases is utilised to convert water into steam via the steam drum. The steam is then further super-heated and drives the turbine/generator, producing electricity which is used to power the facility and exported to the National Grid.

Flue gases leave the boiler and pass through a reactor tower where hydrated lime, powdered activated carbon and water are injected into the swirling gas flow. These neutralise acids and capture heavy metals.

Gases from the reactor tower are then drawn into the fabric filter baghouse. The clean gases pass through the filters and the Air Pollution Control residue (APCr) collects on the outer surface of the bags. The APCr is collected in silos.

Flue Gas is drawn through the entire process by Induced Draft Fans. The clean hot gas from the Fabric Filter is passed through a heat exchanger that heats feed water to provide an efficient process. Cooled gas is emitted via an 85 metre stack where it is discharged into atmosphere. Continuous Emissions Monitoring (CEMS) equipment continually records emissions to air.

Summary of Plant Operations and Maintenance during the reporting year

During 2024, a common plant outage was undertaken in April, and a major inspection shutdown on Line 1 in September. The driver for the common outage was to complete a minor turbine inspection, to rectify defects on all systems, and to perform the required inspections under the Pressure Systems Safety Regulations 2000 (PSSR). The major inspection scope of works included Grate Maintenance, condition monitoring of the Boiler, rectification of defects, refractory refurbishment, Boiler cleaning and Fabric filter maintenance.

2024 improvements as follows:

The Boiler improvement 4-year project to replace refractory tiles with Alloy 625 weld overlay on Line 1 was completed. The modification provides benefits in condition monitoring as well as reducing the temperature of the flue gas around the superheater stages, thus reducing corrosion in the long term. Line 1 Fabric bags were fully changed out as part of the maintenance strategy for the Bag House and a pulse cleaning optimisation was implemented. The Ash Expellers and slag chute were upgraded following a study for safety improvements. There were improvements made to the burners control system, and renewed process control stations for Line 1.

Summary of Residue Handling for the reporting year

100% of the Incinerator Bottom Ash was transported via the River Thames to Blue Phoenix Ltd at their premises at Tilbury Docks.

The Air Pollution Control residue (APCr) was sent to two main destinations throughout 2023:

1) OCO Ltd in Suffolk where it was treated by Accelerated Carbonation Technology (ACT) to produce a stabilised product that is used as a component of breeze blocks.

2) Augean at the East Northants Resource Management Facility (ENRMF) is based at Kings Cliffe near Peterborough which operates and is monitored under strict EPR permits to ensure full compliance with all current legislation.

Metal recovered at site was sent to Goldstar Metal Trading in Cambridgeshire.

Operational Data

Plant Size		850,000	tonnes pa	270	MWth	85	MWe
No. of combustion lines	3	,	No. of Turbin	es:	1		
Waste types received	Unit	Q1	Q2	Q3	Q4	Year Total	%
Household / Local Authority	0	126 158	128 119	130 196	120 401	513 964	63.0%
Commercial & Industrial		81 231	72 156	67 458	78 076	208 021	36.6%
Hazardous		01,231	72,150	07,430	70,070	290,921	30.070
						-	-
Viente wood (hiemone)						-	-
Waste wood (biomass)						-	-
Refuse Derived Fuel - H hold/LA	les					-	-
	onr	2,566		91	345	3,002	0.4%
Other [Please specify]	±					-	-
Other [Please specify]						-	-
Other [Please specify]						-	-
Total waste received		209,955	200,275	197,745	207,912	815,886	
Rejected Waste						-	-
Unprocessed waste transferred out		2,022	896	1,831		4,749	0.6%
Total waste combusted **		201,968	200,075	197,914	207,099	807,056	
	r						
Energy Usage / Export	Unit	Q1	Q2	Q3	Q4	Year Total	KWh/te
Power Generated		155,439	159,267	160,028	166,875	641,609	795
Power Exported	ЧХ	139,163	142,588	142,842	149,950	574,543	712
Power Used on site	ž	16,565	16,984	17,185	16,947	67,681	84
Power Imported		289	304	-	23	616	1
Parasitic Load	%	10.6%	10.6%	10.7%	10.2%	10.5%	
Thermal Energy Produced ***	Å					-	-
Thermal Energy Exported ***	Σ					-	-
R1 value (if applicable)	R1	0.76	0.78	0.79	0.79	0.79	
Waste Disposal & Recovery	Unit	Q1	Q2	Q3	Q4	Year Total	% inputs
APC Residues - produced		5,180	4,794	4,808	5,302	20,083	2.5%
IBA - produced	<i>(</i> 0	41,719	42,045	41,093	43,878	168,735	20.9%
Metals recycling	nes	173	197	240	243	854	0.1%
Other	ton	-	-	-	-	-	-
Other	-	-	-	-	-	-	-
Other		-	-	-	-	-	-
Raw Material Usage	Unit	Q1	Q2	Q3	Q4	Year Total	kg or Ltr /te
Mains Water	ltrs	44,680,000	34,520,000	33,970,000	37,050,000	150,220,000	186.13
Other Water	ltrs					-	-
Ammonia	ltrs	177,728	208,758	238,942	268,006	893,434	1.11
Urea	kgs					-	-
Activated Carbon	kgs	86,837	93,556	86,565	89,963	356,921	0.44
Lime / hydrated lime	kgs	1,845.640	1,933.860	1,969.870	1,710,120	7,459.490	9.24
Fuel oil	ltrs	348.032	309.371	390.094	263,784	1.311.281	1.62
Gas	cuf	,	,	,		-	
Other						-	
Summary	Line/Unit	Q1	Q2	Q3	Q4	Year Total	
Summary	Line/Unit 1	Q1 1,943	Q2 1,985	Q3 1,614	Q4 2,111	Year Total 7,652	87.1%
Summary	Line/Unit 1 2	Q1 1,943 2,071	Q2 1,985 2,008	Q3 1,614 2,170	Q4 2,111 2,205	Year Total 7,652 8,453	87.1% 96.2%
Summary Availability of waste combustion by line_brs ****	Line/Unit 1 2 3	Q1 1,943 2,071 2,057	Q2 1,985 2,008 2,029	Q3 1,614 2,170 2,188	Q4 2,111 2,205 1,964	Year Total 7,652 8,453 8,237	87.1% 96.2% 93.8%
Summary Availability of waste combustion by line, hrs ****	Line/Unit 1 2 3	Q1 1,943 2,071 2,057	Q2 1,985 2,008 2,029	Q3 1,614 2,170 2,188	Q4 2,111 2,205 1,964	Year Total 7,652 8,453 8,237 -	87.1% 96.2% 93.8%
Summary Availability of waste combustion by line, hrs ****	Line/Unit 1 2 3	Q1 1,943 2,071 2,057	Q2 1,985 2,008 2,029	Q3 1,614 2,170 2,188	Q4 2,111 2,205 1,964	Year Total 7,652 8,453 8,237 - -	87.1% 96.2% 93.8%
Summary Availability of waste combustion by line, hrs **** Overall Availability, mean avg. of al	Line/Unit 1 2 3	Q1 1,943 2,071 2,057 2,024	Q2 1,985 2,008 2,029 2,007	Q3 1,614 2,170 2,188 1,990	Q4 2,111 2,205 1,964 2,093	Year Total 7,652 8,453 8,237 - - - 8,114	87.1% 96.2% 93.8% 92.4%
Summary Availability of waste combustion by line, hrs **** Overall Availability, mean avg. of al Hours of turbine operations, hrs	Line/Unit 1 2 3 I lines, hrs 1	Q1 1,943 2,071 2,057 2,024 2,093	Q2 1,985 2,008 2,029 2,007 2,033	Q3 1,614 2,170 2,188 1,990 2,201	Q4 2,111 2,205 1,964 2,093 2,201	Year Total 7,652 8,453 8,237 - - 8,114 8,527	87.1% 96.2% 93.8% 92.4% 97.1%
Summary Availability of waste combustion by line, hrs **** Overall Availability, mean avg. of al Hours of turbine operations, hrs Hours of heat / steam export	Line/Unit 1 2 3 I lines, hrs 1	Q1 1,943 2,071 2,057 2,024 2,093	Q2 1,985 2,008 2,029 2,007 2,033	Q3 1,614 2,170 2,188 1,990 2,201	Q4 2,111 2,205 1,964 2,093 2,201	Year Total 7,652 8,453 8,237 - - 8,114 8,527 -	87.1% 96.2% 93.8% 92.4% 97.1% n/a
Summary Availability of waste combustion by line, hrs **** Overall Availability, mean avg. of al Hours of turbine operations, hrs Hours of heat / steam export Net Calorific Value of waste	Line/Unit 1 2 3 I lines, hrs 1 MJ/kg	Q1 1,943 2,071 2,057 2,024 2,093 9.53	Q2 1,985 2,008 2,029 2,007 2,033 9.50	Q3 1,614 2,170 2,188 1,990 2,201 9.66	Q4 2,111 2,205 1,964 2,093 2,201 9.61	Year Total 7,652 8,453 8,237 - - 8,114 8,527 - 9.57	87.1% 96.2% 93.8% 92.4% 97.1% n/a

Abnormal Events	qty.			1	1	yes
Abnormal operation	hours			1.5	1.5	0.0%
Permit Breaches	qty.	13	7	11	31	yes

2024 Annual Reporting Performance Form 1

Permit EP	R/BK0825IU	Operator:	Cory	
Facility:	Riverside Resource F	Recovery Facility	Form:	Performance 1
Reporting	Period from:	01 January 2024	to:	31 December 2024

2024 Annual Reporting of Waste Disposal and Recovery

Waste Description	Disposal Route(s)	Disposal Tonnes	Recovery Tonnes	% / tonne of waste incinerated
1) Hazardous Wastes				
APC Residues	R05, D05	10,310.8	9,772.2	2.5%
IBA				-
				-
				-
Total Hazardous Waste	÷	10,310.8	9,772.2	2.5%
2) Non-Hazardous Was	stes			
IBA	R04		168,735.0	20.9%
Ferrous Metal	R04		853.5	0.1%
Process Water				-
				-
				-
Total Non-Hazardous W	Vaste	0.0	169,588.5	21.0%
TOTAL WASTE		10,310.8	179,360.7	23.5%
Onerster's common				
Operator's commen				

2024 Annual Reporting of Water and Other Raw Material Usage

Raw Material	Usage	Unit	Specific Usage	Unit
Mains Water	150220	m ³	0.19	m ³ /te
Total Water	150220	m ³	0.19	m ³ /te
Ammonia	893434	ltrs	1.11	ltr/te
Activated Carbon	356921	kg	0.44	kg/te
Hydrated lime	7459490	kg	9.24	kg/te
Operator's comments :				

2024 Annual Reporting of other performance indicators

Parameter	Results by I	ine					
	A1	A2	A3	A4	A5	Turbine 1	Turbine 2
Operating hours for the year, hours	7652	8453	8237			8527	
Number of periods of abnormal operation, qty.		1					
Cumulative hours of abnormal operation for this year, hours		1.5					
Operator's commer	nts :						

Date:

2024 Annual Reporting of Energy Usage/Export

Permit EP	R/BK0825IU		Operator:		Cory
Facility:	Riverside Resource Re	ecovery Facility	Form:	Energy 1	
Reporting	Period from:	01 January 2024	to:	31 Decembe	er 2024

Energy Source	Energy Usage	Unit	Specific Usage (KWh/tonne incinerated
Electricity Produced	641,609	MWh	795
Electricity Imported	615.9	MWh	1
Electricity Exported	574,543	MWh	712
Gas Oil		tonnes	
Steam/hot water exported	0	GWh	-

Operator's comments :

Signed:

Date:

Summary of Permit Compliance

Compliance with permit limits for continuously monitored pollutants

The plant met its emission limits as shown in the table below:

Substance	Percentage time compliant during operation ^{Note 1}		
	Half-hourly limit	Daily limit	
Particulates			
Oxides of nitrogen	100.00%	100.00%	
Sulphur dioxide	100.00%	100.00%	
Carbon monoxide	98.08% 95% of 10-min averages	100.00%	
Total organic carbon	99.98%	100.00%	
Hydrogen chloride	100.00%	100.00%	
Hydrogen fluoride	100.00%	100.00%	

	Summary of non-compliances under the permit Note 2				
Date	Summary of non-compliance Note 3	Reason	Measures taken to prevent reoccurrence	CCS s applic	core if cable*
		-	_	Impact	Root cause
21 x exceedances	Carbon monoxide - exceedance of 95%tile of 10min averages	Exceedance result of multiple over-pressurisations events in the furnace due to volatile fractions of waste stream	Continue to audit waste to eradicate volatile fractions	CCS4	
10 x exceedances	TOC half-hourly exceedance - (limit 20mg/Nm3)	Exceedance result of multiple over-pressurisations events in the furnace due to volatile fractions of waste stream	Continue to audit waste to eradicate volatile fractions	CCS4	

*If the Environment Agency (EA) has given a Compliance Classification Scheme (CCS) score due to a permit non-compliance it should be entered here (CCS4 = No impact; CCS3 = Minor impact; CCS2 = Significant impact; CCS1 = Major impact). If the EA has not yet assessed a non-compliance which you have notified to them, these columns should be left blank. Enter N/A if no score was given for the root cause.

Summary of any complaints received and actions to taken to resolve them.

Date	Summary of complaint [including Line/Reference]	Reason (including whether substantiated by the operator or the EA)	Measures taken to prevent reoccurrence

Summary of Plant Improvements

Summary of any efficiency improvements that have been completed within the year.

Summary of any permit improvement conditions that have been completed within the year and the resulting environmental benefits.

Imporovement Condition 3: Dioxin monitoring during Line Start-up and Shuitdown periods performed. Dioxin levels found to be low and stable during both start-up and shutdown with no increase risk to the environment.

Summary of any changes to the plant or operating techniques which required a variation to the permit and a summary of the resulting environmental impact.

Summary of any other improvements made to the plant or planned to be made and a summary of the resulting environmental benefits.

Details of Public & Stakeholder Liaison

Summary of events held during the reporting year.			
Date	Description		
22/07/24 - 27/07/24 & 28/10/24 - 01/11/24	SchoolWork Experience event.		
27/02/2024 & 01/11/2024	Reading University Environmental Management Students - Presentation & Site Tour		
Various	Monthly local Community group site tours		
17/06/2024	Harris Garrard Industrial Cadet		

List of events planned for next year		
Date	Description	
13/01/2025	Imperial College London - Environmental Management Students - Presentation & Site Tour	
25/04/2025	Reading University Environmental Management Students - Presentation & Site Tour	
Various	Monthly local Community group site tours	

If you wish to be involved in the public liaison programme, please contact enquiries@corygroup.co.uk

bon dioxide emissions and biogenic content of waste inputs

oon dioxide emissions (all types of plant)

Annual mass of carbon dioxide released	tonnes	899,588
Annual mass of carbon dioxide released per tonne of waste burned	t CO ₂ / t waste	1.11
Annual mass of carbon dioxide released per MWh of energy exported	t CO ₂ / MWh export	1.57
Description of how annual carbon dioxide mass emission has been calculated. See Note 1	CO2 measured as part of continuous emissions monitoring system (CEMS).	

)us oxide emissions (only plants which use ammonia or urea to abate NOx emissions)

Annual mass emissions of nitrous oxide	tonnes N ₂ O	1.534
Description of how annual nitrous oxide mass emission has been calculated See Note 2	N2O measured as part of continuous emissions monitoring s (CEMS).	
I annual carbon dioxide + nitrous e emissions. Note 3.	tonnes CO₂e	457

jenic CO2 emissions (See Note 4)

Percentage of total carbon dioxide emissions arising from biogenic waste	%	62.0%
No. of measurements undertaken	Number	7
Description of how percentage biogenic carbon dioxide emissions have been measured or calculated. See Note 5	C14 sampling u	sing installed continuous sampling unit.

jenic fraction of waste feedstock (See Note 4)

Yearly average biogenic percentage of the waste by net calorific value (NCV)	%	49.6%
Description of how biogenic percentage (by NCV) has been calculated or estimated. See Note 6	Using the composition the correspondin determined from labo electricity generated	nal data derived from the waste hand sorting, g biodegradable factors and the CV data oratory analysis, the qualifying percentage of I from renewable sources can be calculated

Yearly average biogenic percentage of the waste by mass	%	54.3%
If waste sampling undertaken, no. of samples used to ascertain average biogenic percentages above	Number	32
Description of how biogenic percentage (by mass) has been calculated or estimated. See Note 7	Result converted to % Energy Conte	mass using "Renewable Energy Association ent of Fuels - Description of Method"

Residue Quality Monitoring Requirements

Summary of monitoring undertaken and compliance

In 2024, the Incinerator Bottom of Ash was tested quarterly for Total Organic Carbon (TOC), Heavy Metals suite, Dioxins/Furans and Dioxin-like PCBs in line with the site permit requirements.

In 2024, The Air Pollution Control residue (APCr) was tested for Heavy Metals suite, Dioxins/Furans and Dioxin-like PCBs in line with the site permit requirements.

In 2024, the facility continued to adopt the the ESA Sampling & Testing Protocol to Assess the Status of Incinerator Bottom Ash, for the hazard assessment of IBA. The IBA remained classified as non-hazardous throughout 2024.

Commentary on any specific events

Date & Event	Description

Residue Quality Monitoring Results			
D	Limit* Norm Bottom ash	Normal Operation	
Parameter (unit)		APC Residues	
Total Organic Carbon (average %)	<3%	1.21	
No. of Assessments Undertaken		4	4
No. of Hazardous Results		0	

* The permit will specify a limit of either 5% loss on ignition or 3% total organic carbon. If both are measured anyway, please enter the results here, even where the limit does not apply.

Emissions to Water

Summary of monitoring undertaken and compliance Monthly visual assessment for visible oil or grease at three emission points for uncontaminated roof and surface water. No visible signs of oil or grease seen throughout 2024.

Commentary on any specific events

Date & Event	Description

Emissions to Water / Sewer

Parameter	Monitoring Frequency	Limit	Target	Max.	Average

Emissions to Air (periodically monitored)

Summary of monitoring undertaken, standards used and compliance

Substance Hydrogen fluoride Cd and TI and their compounds Hg and its compounds Sb, As, Pb, Cr, Co, Cu, Mn, Ni, V and their compounds Dioxins & Furans (I-TEQ)	Ref. Period 1 hr 0.5-8hrs 0.5-8hrs 0.5-8hrs	Emission Limit Value 1 mg/m ³ 0.02 mg/m ³ 0.02 mg/m ³	A1 0.0221 0.001	Average A2 0.0238 0.0012	A3 0.0214
Hydrogen fluoride Cd and TI and their compounds Hg and its compounds Sb, As, Pb, Cr, Co, Cu, Mn, Ni, V and their compounds Dioxins & Furans (I-TEQ)	Period 1 hr 0.5-8hrs 0.5-8hrs 0.5-8hrs	Value 1 mg/m³ 0.02 mg/m³ 0.02 mg/m³	A1 0.0221 0.001	A2 0.0238	A3 0.0214
Hydrogen fluoride Cd and TI and their compounds Hg and its compounds Sb, As, Pb, Cr, Co, Cu, Mn, Ni, V and their compounds Dioxins & Furans (I-TEQ)	1 hr 0.5-8hrs 0.5-8hrs 0.5-8hrs	1 mg/m ³ 0.02 mg/m ³ 0.02 mg/m ³	0.0221	0.0238	0.0214
Cd and TI and their compounds Hg and its compounds Sb, As, Pb, Cr, Co, Cu, Mn, Ni, V and their compounds Dioxins & Furans (I-TEQ)	0.5-8hrs 0.5-8hrs 0.5-8hrs	0.02 mg/m ³ 0.02 mg/m ³	0.001	0.0012	
Hg and its compounds Sb, As, Pb, Cr, Co, Cu, Mn, Ni, V and their compounds Dioxins & Furans (I-TEQ)	0.5-8hrs 0.5-8hrs	0.02 mg/m ³		0.0012	0.0048
Sb, As, Pb, Cr, Co, Cu, Mn, Ni, V and their compounds Dioxins & Furans (I-TEQ)	0.5-8hrs		0.0004	0.0004	0.0004
Dioxins & Furans (I-TEQ)		0.3 mg/m ³	0.0116	0.0255	0.0353
. ,	6-8hrs	0.06 ng/m ³	0.0014	0.0019	0.0047
PCBs (WHO-TEQ Humans /	0.01	None set ng/m ³	0.0003	0.0002	0.0006
Mammals)	6-8hrs	2			
PCBs (WHO-TEQ Fish)	6-8hrs	None set ng/m ³	0.00002	0.00001	0.00003
PCBs (WHO-TEQ Birds)	6-8hrs	None set ng/m ³	0.00079	0.0007	0.0011
Dioxins & Furans (WHO- TEQ Humans / Mammals)	6-8hrs	None set ng/m ³	0.00149	0.002	0.0045
Dioxins & Furans (WHO- TEQ Fish)	6-8hrs	None set ng/m ³	0.00149	0.0021	0.0045
Dioxins & Furans (WHO- TEQ Birds)	6-8hrs	None set ng/m ³	0.00222	0.0032	0.0077
Anthanthrene	6-8hrs	None set µg/m³	0.0012	0.0012	0.0012
Benzo(a)anthracene	6-8hrs	None set µg/m³	0.0025	0.0014	0.0016
Benzo(a)pyrene	6-8hrs	None set µg/m³	0.0019	0.0012	0.0016
Benzo(b)fluoranthene	6-8hrs	None set µg/m³	0.0039	0.0012	0.0015
Benzo(b)naptho(2,1-d) thiophene	6-8hrs	None set µg/m³	0.0012	0.0012	0.0012
Benzo(c)phenanthrene	6-8hrs	None set µg/m ³	0.0012	0.0012	0.0012
Benzo(ghi)perylene	6-8hrs	None set µg/m³	0.0018	0.0012	0.0021
Benzo(k)fluoranthene	6-8hrs	None set µg/m³	0.0017	0.0012	0.0012
Cholanthrene	6-8hrs	None set µg/m³	0.0012	0.0012	0.0012
Chrysene	6-8hrs	None set µg/m ³	0.0039	0.0063	0.0028
Cyclopenta(cd)pyrene	6-8hrs	None set µg/m³	0.0012	0.0012	0.0064
Dibenzo(ai)pyrene	6-8hrs	None set µg/m³	0.0012	0.0012	0.0012
Dibenzo(ah)anthracene	6-8hrs	None set µg/m³	0.0012	0.0012	0.0012
Fluoranthene	6-8hrs	None set µg/m ³	0.0812	0.0725	0.0626
Indeno(123-cd) pyrene	6-8hrs	None set µg/m ³	0.0017	0.0012	0.0012
Naphthalene	6-8hrs	None set µg/m ³	0.3784	0.4218	0.1134
Comments :					

Emissions to Air (continuously monitored)

Summary of monitoring undertaken, standards used and compliance

All substances listed below are continuously monitored in line with the requirements of the Environmental permit. Oxides of Nitrogen (ISO 10849), Particulate Matter (BS EN 13284-2), Total Organic Carbon (BS EN 12619), Hydrogen Chloride, Sulphur Dioxide (BS 6069-4.4)

Value 180 mg/m³ 400 mg/m³ 5 mg/m³ 30 mg/m³ 10 mg/m³	Max. 161.9 226.6	Avg. 150.7 150.7	Max. 149.7 226.1	Avg. 148.8 148.8	Max. 154.1 150.1	Avg. 149.5 149.5	Max.	Avg.	Max.	Avg.
180 mg/m ³ 400 mg/m ³ 5 mg/m ³ 30 mg/m ³ 10 mg/m ³	161.9 226.6	150.7 150.7	149.7 226.1	148.8 148.8	154.1 150.1	149.5 149.5				
400 mg/m ³ 5 mg/m ³ 30 mg/m ³ 10 mg/m ³	0.4	150.7	226.1	148.8	150.1	149.5				
5 mg/m ³ 30 mg/m ³ 10 mg/m ³	0.4									
30 mg/m ³ 10 mg/m ³	0.4									
10 mg/m^3	04									
00	0.1	0.26	1.3	1	1	0.68				
20 mg/m	0.4	0.27	1.3	1.1	1.1	0.71				
8 mg/m ³	3.8	2.6	2	1.3	3.7	2.9				
60 mg/m ³	3.8	2.7	2	1.4	3.7	2.95				
40 mg/m ³	1.4	0.43	0.8	0.27	2.6	0.72				
200 mg/m ³	1.4	0.48	0.8	0.3	3.1	0.78				
50 mg/m ³	23.7	18.3	26	18.5	24.7	17.7				
150 mg/m ³	1089.7	18.3	1209.5	18.5	1976	17.7				
15 mg/m ³	5.5	2.1	3.7	1.7	2.4	1.9				
1	50 mg/m ³ 150 mg/m ³ 15 mg/m ³	200 mg/m 1.4 50 mg/m ³ 23.7 150 mg/m ³ 1089.7 15 mg/m ³ 5.5	200 mg/m 1.4 0.48 50 mg/m ³ 23.7 18.3 150 mg/m ³ 1089.7 18.3 15 mg/m ³ 5.5 2.1	200 mg/m 1.4 0.48 0.8 50 mg/m ³ 23.7 18.3 26 150 mg/m ³ 1089.7 18.3 1209.5 15 mg/m ³ 5.5 2.1 3.7	200 mg/m 1.4 0.48 0.8 0.3 50 mg/m ³ 23.7 18.3 26 18.5 150 mg/m ³ 1089.7 18.3 1209.5 18.5 15 mg/m ³ 5.5 2.1 3.7 1.7	200 mg/m 1.4 0.46 0.8 0.3 3.1 50 mg/m ³ 23.7 18.3 26 18.5 24.7 150 mg/m ³ 1089.7 18.3 1209.5 18.5 1976 15 mg/m ³ 5.5 2.1 3.7 1.7 2.4	200 mg/m 1.4 0.48 0.8 0.3 3.1 0.78 50 mg/m ³ 23.7 18.3 26 18.5 24.7 17.7 150 mg/m ³ 1089.7 18.3 1209.5 18.5 1976 17.7 15 mg/m ³ 5.5 2.1 3.7 1.7 2.4 1.9	200 mg/m 1.4 0.48 0.8 0.3 3.1 0.78 50 mg/m ³ 23.7 18.3 26 18.5 24.7 17.7 150 mg/m ³ 1089.7 18.3 1209.5 18.5 1976 17.7 15 mg/m ³ 5.5 2.1 3.7 1.7 2.4 1.9	200 mg/m 1.4 0.48 0.8 0.3 3.1 0.78 0.78 50 mg/m ³ 23.7 18.3 26 18.5 24.7 17.7 150 mg/m ³ 1089.7 18.3 1209.5 18.5 1976 17.7 150 mg/m ³ 5.5 2.1 3.7 1.7 2.4 1.9 1.9	200 mg/m ³ 1.4 0.48 0.8 0.3 3.1 0.78 10.78 50 mg/m ³ 23.7 18.3 26 18.5 24.7 17.7 10.178 10.178 150 mg/m ³ 1089.7 18.3 1209.5 18.5 1976 17.7 10.178 10.178 15 mg/m ³ 5.5 2.1 3.7 1.7 2.4 1.9 10.178

Following EA guidance and approval in July 2015, RRRL monitor particulate emissions qualitatively as opposed to quantitatively.

Riverside Resource Recovery Facility

Monitoring of Hydrogen Chloride emissions

Whole Installation

See Notes in Cell Q3

2024	1/2 H	ourly Reference Pe	riods	Daily Reference Periods			
mg/Nm ³	1/2 hourly HCI ELV	Monthly mean of half-hourly averages	Highest half- hourly average	Daily HCI ELV	Monthly mean of daily averages	Highest daily average	
Jan	60	2.40	5.4	8	2.37	4.9	
Feb	60	2.47	5.8	8	2.47	4.9	
Mar	60	2.47	6.4	8	2.37	5.0	
Apr	60	2.63	8.0	8	2.60	5.0	
May	60	2.23	4.5	8	2.13	3.9	
Jun	60	2.23	4.5	8	2.20	3.8	
Jul	60	2.70	5.1	8	2.67	4.3	
Aug	60	2.70	7.5	8	2.67	4.9	
Sep	60	1.63	3.9	8	1.63	2.7	
Oct	60	1.80	5.4	8	1.73	3.6	
Nov	60	2.07	5.6	8	2.07	3.3	
Dec	60	2.57	5.3	8	2.57	4.6	

Riverside Resource Recovery Facility

Monitoring of Sulphur dioxide emissions

Whole Installation

See Notes in Cell Q3

2024	1/2 He	ourly Reference Pe	eriods	Daily Reference Periods			
mg/Nm ³	1/2 hourly SO2 ELV	Monthly mean of half-hourly averages	Highest half- hourly average	Daily SO2 ELV	Monthly mean of daily averages	Highest daily average	
Jan	200	0.27	19.3	40	0.23	1.7	
Feb	200	0.57	19.4	40	0.53	5.3	
Mar	200	0.43	66.7	40	0.40	2.2	
Apr	200	1.27	37.2	40	1.03	10.8	
May	200	0.87	30.2	40	0.83	2.4	
Jun	200	0.67	39.0	40	0.63	2.1	
Jul	200	0.13	37.7	40	0.13	1.2	
Aug	200	0.23	38.1	40	0.20	1.3	
Sep	200	0.40	21.3	40	0.37	2.0	
Oct	200	0.53	27.6	40	0.50	6.8	
Nov	200	0.47	34.3	40	0.43	3.8	
Dec	200	0.37	59.6	40	0.37	8.1	

Riverside Resource Recovery Facility

Monitoring of Oxides of Nitrogen emissions

Whole Installation

See Notes in Cell Q3

2024	1/2 H	ourly Reference Pe	eriods	D	aily Reference Per	iods
mg/Nm ³	1/2 hourly NOx ELV	Monthly mean of half-hourly averages	Highest half- hourly average	Daily NOx ELV	Monthly mean of daily averages	Highest daily average
Jan	400	148.87	226.1	180	149.07	151.30
Feb	400	149.07	206.1	180	149.07	152.50
Mar	400	148.97	190.7	180	148.90	151.30
Apr	400	148.10	226.6	180	148.10	153.60
May	400	149.60	199.7	180	149.53	152.10
Jun	400	149.93	216.3	180	149.90	164.70
Jul	400	149.63	188.0	180	149.53	152.70
Aug	400	149.77	190.3	180	149.73	154.10
Sep	400	153.50	223.4	180	153.63	164.90
Oct	400	149.57	217.7	180	149.53	156.20
Nov	400	149.67	224.1	180	149.50	151.40
Dec	400	149.47	201.5	180	149.40	150.90

Riverside Resource Recovery Facility

Monitoring of Total organic carbon emissions Whole Installation

See Notes in Cell Q3

2024	1/2 H	ourly Reference Pe	eriods	Daily Reference Periods			
mg/Nm ³	1/2 hourly TOC ELV	Monthly mean of half-hourly averages	Highest half- hourly average	Daily TOC ELV	Monthly mean of daily averages	Highest daily average	
Jan	20	0.43	11.8	10	0.43	1.2	
Feb	20	0.43	11.9	10	0.43	1.4	
Mar	20	0.43	13.9	10	0.43	1.6	
Apr	20	0.73	11.4	10	0.67	2.8	
May	20	0.73	11.3	10	0.67	2.9	
Jun	20	0.67	11.2	10	0.63	1.9	
Jul	20	0.67	13.8	10	0.63	1.5	
Aug	20	0.73	14.4	10	0.67	1.9	
Sep	20	0.83	16.6	10	0.80	2.2	
Oct	20	0.83	19.5	10	0.77	1.9	
Nov	20	0.93	17.4	10	0.90	2.3	
Dec	20	0.77	18.9	10	0.77	2.5	

Monitoring of Carbon Monoxide (10-minute avg)

Please complete this tab for your plant if you have 10-minute average CO ELVs; otherwise, leave it blank and complete the CO 0.5 hourly tab

Riverside Resource Recovery Facility

See Notes in Cell S3

Whole Installation

2024		10-minute F	Reference Periods	D	aily Reference Pe	Reference Periods	
mg/Nm ³	95%ile 10-min avg CO ELV	Highest daily 95%ile 10-min average	Monthly mean of 10- min averages	Highest 10-min average	Daily CO ELV	Monthly mean of daily averages	Highest daily average
Jan	150	98.7	15.07	1179.4	50	15.10	25.7
Feb	150	87.9	15.37	880.3	50	15.30	24.4
Mar	150	120.4	15.33	1064.9	50	15.43	29.4
Apr	150	234.2	17.10	1976	50	17.13	37.1
May	150	177.4	15.43	1409.2	50	15.33	40.4
Jun	150	171.2	16.53	1070.8	50	16.47	34.4
Jul	150	145.7	16.30	1124.6	50	16.27	33.5
Aug	150	148.4	18.23	1473.2	50	18.17	33.2
Sep	150	232.6	21.40	1085.2	50	21.37	41.4
Oct	150	139.4	21.80	979.5	50	21.80	36.5
Nov	150	248.6	25.07	1421.6	50	24.80	48.1
Dec	150	157.0	20.73	1209.5	50	20.73	38.0

Comments :

Environment Agency explanatory note: The 10-minute average ELV is based on the "95th percentile". In this case this means that 95% of the 10 minute averages in the relevant 24-hour period (i.e. 137) must be below 150 mg/Nm3, and 5% (i.e. 7) are allowed to be any value above 150 mg/Nm3. Whilst we expect operators to minimise CO emissions at all times, it is perfectly acceptable for the value of the maximum 10-minute average to be above 150 mg/Nm3, provided the 95th percentile ELV has been met for that period.

Riverside Resource Recovery Facility

Monitoring of Ammnonia emissions

Whole Installation

See Notes in Cell Q3

2024	1/2 Ho	ourly Reference Pe	eriods	Daily Reference Periods			
mg/Nm ³	1/2 hourly NH3 ELV	Monthly mean of half-hourly averages	Highest half- hourly average	Daily NH3 ELV	Monthly mean of daily averages	Highest daily average	
Jan	None	1.40	7.9	15	1.37	3.4	
Feb	None	1.30	4.4	15	1.30	2.3	
Mar	None	1.43	10.2	15	1.40	2.1	
Apr	None	1.60	7.4	15	1.53	3.3	
May	None	1.80	13	15	1.77	3.1	
Jun	None	1.63	10.5	15	1.60	2.7	
Jul	None	1.67	4.9	15	1.60	2.7	
Aug	None	1.63	12.4	15	1.60	3.4	
Sep	None	3.43	24.5	15	3.33	8.1	
Oct	None	2.57	21.8	15	2.50	5.4	
Nov	None	2.60	25.1	15	2.53	4.7	
Dec	None	2.10	39.8	15	2.10	4.7	

Comments :

An indicated ELV value of zero in the table above means that no ammonia limit is/was set in the permit.

Log of changes to template (Environment Agency use only)

Date	Description of change	New version number and date
16/01/2024	Air (periodic) tab: corrected default O2 reference from 6 to 11%	Version 23.5a (for incinerators) - 16/01/2024
23/09/2024	Air (periodic) tab: corrected symbol for Thallium to Tl	
23/09/2024	Air (periodic) tab: removed last year's references to different emission limit values applying from 03/12/23 and	
	updated all relevant ELVs	
23/09/2024	Tabs for continuously monitored pollutants (HCl, SO2 etc.): changed terminology in table headings to improve	
	clarity	
23/09/2024	Tabs for continuously monitored pollutants (HCl, SO2 etc.): removed last year's references to different emission	
	limit values applying from 03/12/23 and updated all relevant ELVs	
23/09/2024	Perf 1 tab: updated formula for water usage to report m3 rather than litres and corrected error with formula	
	copying operator name	
23/09/2024	Operational Summary tab: table added on start-ups and shut-downs	
23/09/2024	Operational Summary tab: table added on dioxins and mercury protocols	
23/09/2024	Operational Summary tab: table added on AST, QAL 2 and calibration functions	
23/09/2024	CO2 N2O tab: various changes made to notes to reflect the fact that most plants should now have calibrated	Version 24a (for incinerators) - 23/09/24
	CEMS and flow meters + some have C14 samplers and more up to date industry data	
08/11/2024	CO2 N2O tab: Changed the N2O CO2 equivalence factor from 298 to 265 in line with recently updated	
	government greenhouse gas figures: https://www.gov.uk/government/publications/greenhouse-gas-reporting-	
	conversion-factors-2024	
08/11/2024	CO2 N2O tab: Added an additional requirement for municipal EfW plants to state the yearly average biogenic	
	percentage of the waste by mass, and reference to a document which sets out a methodology for calculating	
	NCV of waste from the results of C14 sampling.	
08/11/2024	Permit Compliance tab: Two additional columns added + explanatory notes to the table entitled "Summary of	
	non-compliances under the permit" to allow CCS scores to be stated where relevant.	
08/11/2024	Residue Quality tab: Note added explaining application of TOC and LOI limits and asking operators to report both	Version 24.1a (for incinerators) - 08/11/24
	metrics where measured.	
27/11/2024	Operational Summary tab: Tables on mercury & dioxins protocols and ASTs removed (covered instead by new	Version 24.2a (for incinerators) - 27/11/24
	tables added to updated Air 9 periodic monitoring form)	